Knowledge Discovery Conduted in the Areas of Machine Learning By High Performance Computing

V. Rama Rao

Abstract


Knowledge discovery in databases (KDD) The latest research in the field of statistics, machine learning, Amnesty International. This is part of the area of the rapid growth of data Mining and knowledge discovery. The topics covered here Major issues, sorting, assembling and Application. The various stages of data collection and research Questions focused.   The nature of clinical data makes it difficult to quickly select, tune and apply machine learning algorithms to clinical prognosis. As a result, a lot of time is spent searching for the most appropriate machine learning algorithms applicable in clinical prognosis that contains either binary-valued or multi-valued attributes. The study set out to identify and evaluate the performance of machine learning classification schemes applied in clinical prognosis of post-operative life expectancy in the lung cancer patients. Multilayer Perceptron, J48, and the Naive Bayes algorithms were used to train and test models on Thoracic Surgery datasets obtained from the University of California Irvine machine learning repository. Stratified 10-fold cross-validation was used to evaluate baseline performance accuracy of the classifiers. The comparative analysis shows that multilayer perceptron performed best with classification accuracy of 82.3%, J48 came out second with classification accuracy of 81.8%, and Naive Bayes came out the worst with classification accuracy of 74.4%. The quality and outcome of the chosen machine learning algorithms depends on the ingenuity of the clinical miner.


Full Text:

PDF

Refbacks

  • There are currently no refbacks.


Copyright (c) 2017 Edupedia Publications Pvt Ltd

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Publisher

EduPedia Publications Pvt Ltd, D-351, Prem Nagar-2, Suleman Nagar, Kirari, Nagloi, New Delhi PIN-Code 110086, India Through Phone Call us now: +919958037887 or +919557022047

All published Articles are Open Access at https://edupediapublications.org/journals/


Paper submission: editor@edupediapublications.com or edupediapublications@gmail.com

Editor-in-Chief       editor@edupediapublications.com

Mobile:                  +919557022047 & +919958037887

Websites   https://edupediapublications.org/journals/.

Journals Maintained and Hosted by

EduPedia Publications (P) Ltd in Association with Other Institutional Partners

http://edupediapublications.org/

Pen2Print and IJR are registered trademark of the Edupedia Publications Pvt Ltd.